数学科の授業における，論理的思考力を育成する取組

—考えを可視化する活動を通して—

西山 有希乃 ${ }^{1}$
変化の激しい今の時代において，自らの考えや判断について他に理解を得る力を身に付けるために，論理的思考力の育成が求められている。数学の学習を通して論理的思考力を育成するためには，自らの考えや判断の前提を明確にし，根拠を示しながら的確な説明をする指導の工夫が必要であると考えた。その工夫とし て，考えを可視化する活動を取り入れた授業を行い，論理的思考力の育成に有効であるかを検証したところ，一定の効果があった。

はじめに

『高等学校学習指導要領（平成 30 年告示）解説 数学編 理数編』（以下，『解説数学編』という）には，高等学校における数学教育の意義の中で，論理的に自分 の考えなどを説明する力について，「グローバル化や情報化が進展する今日のような時代において，一中略一数学の学習を通して育成される，自らの考えや判断 の前提を明確にし，根拠を示しながら考えや判断につ いて的確な説明をして他に理解を得る力はとりわけ重要な力である」（文部科学省 2019a p．7）と述べられ ている。

「幼稚園，小学校，中学校，高等学校及び特別支援学校の学習指導要領等の改善及び必要な方策等につい て（答申）」には，高等学校数学科の課題として，「事象を式で数学的に表現したり論理的に説明したりする こと」（中央教育審議会 2016）が挙げられている。所属校における数学科の授業でも，解法の手順を覚える ことばかりに生徒の意識が向いていて，問題解決に至 るまでの根拠を示しながら説明することに課題がある。

『解説数学編』には，数学を学習する意義などを実感できるよう工夫するとともに，自らの考えを数学的 に表現して説明したり，議論したりする活動（文部科学省 2019a p．134）の重要性が述べられており，また，『算数教育指導用語辞典 第三版』には，「論理的思考力の育成には，自分の行動や考えを言葉で表現させ ることが有効である」（日本数学教育学会出版部 2004）と述べられている。

これらのことから，論理的に自分の考えなどを説明 する力を育成するためには，数学科の授業における表現活動の充実が求められていると考え，本研究の目的 を次のように設定した。

研究の目的

[^0]本研究の目的は，数学科の授業において，論理的思考力を育成するための表現活動を実践し，その有効性 を明らかにすることである。なお，本研究では，「論理的思考力」を「数学の授業で扱う正解のある問題（以下，問題という）について，自らの考えや判断の前提を明確にし，問題解決に至るまでの根拠を示しながら的確な説明をして他に理解を得る力」と定義した。

研究の内容

1 研究の仮説

（1）課題解決に向けての指針
『解説数学編』には，「生徒が既習の数学を活用し て思考したり判断したりすることをよりよく行うこと ができるよう，言葉や数，式，図，表，グラフなどの数学的な表現を用いて，論理的に考察し表現したり， その過程を振り返って考えを深めたりする学習活動を充実させる」（文部科学省 2019a p．133）と述べられ ている。このこと及び前述の内容を踏まえ，論理的思考力を育成するためには数学的な表現活動の充実が必要であると考え，本研究では，まず記述による表現活動を充実させることに重点を置くことにした。検証に ついては，定義にある「他に理解を得る」度合いが相手の背景的知識等に影響を受けると考えた。そこで，
「自らの考えや判断の前提を明確にし，問題解決に至 るまでの根拠を示しながら的確な説明をすること」ま でを検証の対象とすることとした。

ア 自らの考えや判断の前提を明確にする

自らの考えや判断の前提として，問題についての基礎的•基本的な知識及び技能を習得していることが必要であると考えられる。『解説数学編』には，「数学 における基本的な概念や原理•法則を理解することは，数学における様々な知識の裏付けとなり，技能の支え となるもの」（文部科学省 2019a p．27）と述べられて いる。また，有明（2020）は，「つながりマップ」とい うワークシートを用いて，学習項目のつながりを可視化することにより，生徒の体系的な理解を促すことが

できたと述べている。さらに，『解説数学編』には，単元などの内容や時間のまとまりの中で，学習したこ とを振り返るなどして自身の学びや変容を自覚する場面を設定する（文部科学省 2019a p．129）ことの重要性が述べられている。これらのことから，基礎的•基本的な学習内容と，学習活動を振り返る中で得た気付 き（以下，気付きという）をまとめて記述することで，学習内容の理解を一層深めることができると考えた。
また，『高等学校学習指導要領（平成30年告示）解説総合的な探究の時間編』（以下，『解説総探編』とい う）には，「学習過程において『考えるための技法』を意識的に活用させることによって，生徒の思考を支援 する」（文部科学省 2019b pp．51－52）と述べられてい る。「考えるための技法」とは，考える際に必要にな る情報の処理方法を具体化し，技法として整理したも のである。（文部科学省 2019b p．95）「考えるための技法」の活用は，数学の学習過程においても生徒の思考を支援したり，問題解決を方向付けたりすると考え た。

以上から，基礎的•基本的な学習内容，気付き及び「考えるための技法」を可視化することで，自らの考 えや判断の前提が明確になり，問題解決に至るまでの根拠を支えることができると考えた。

イ 根拠を示しながら的確な説明をする

『解説数学編』には，思考の過程や判断の根拠など を数学的な表現を用いて簡潔•明膫•的確に表現して説明する学習活動の充実を図る（文部科学省 2019a p．133）ことが述べられている。西森（2017）は「根拠•筋道の明確化」における表現を目指した手立てについ て，説明に含めるべき要素や説明の型を示すことを挙 げている。説明に含めるべき要素とは，問題から分か ること，根拠に至る気付き，既習事項，方法や計算等，問題の答えを指す。説明の型とは，その要素で構成さ

れた説明の流れを示したものを指す。
以上から，説明に含めるべき要素や説明の型を用い て，問題解決に至るまでの思考の過程を記述すること で，根拠を示しながら的確な説明ができるようになる と考えた。
論理的思考力を育成するためには，アとイを促す ワークシートを考案し，それらを活用した考えを可視化する活動が有効であると考え，次のような仮説を立 てた。

（2）研究の仮説

数学科の授業において，考えを可視化する活動は，論理的思考力の育成に有効である。

2 研究の手立て

学習内容をまとめたワークシートと応用問題の際に用いるワークシートを考案し，それらを活用した取組 を行う。

（1）まとめシートによる可視化

基礎的•基本的な学習内容，気付き及び「考えるた めの技法」を 1 枚にまとめるワークシートを作成し，名称を「まとめシート」（図 1 ）とした。まとめシート の表面には，授業で扱った基礎的•基本的な学習内容 を記入する欄とふきだしの欄を設けた。ふきだしの欄 に，授業中の学習活動から得た，学習内容の有用性や関連性，注意すべき点等の気付きを，自分の言葉で記述する。まとめシートは，授業の振り返りのときに記述する時間を設け，単元の終了時に完成するものとし た。

まとめシートの裏面には，生徒の思考を支援するも のとして，八つのアイコン（以下，思考アイテムという） （表1）を提示した。これは，『解説総探編』の「考え るための技法の例」（文部科学省 2019b p．97）より，「比較する」，「具体化する」，「多面的に見る」，

表面

裏面

図1 まとめシート

「関連付ける」，「分類する」の五つの技法を，数学 の問題解決で活用しやすいように表したものである。思考アイテムを毎授業で黒板に掲示し，学習内容の説明で用いたり，生徒はその中から問題解決のヒントに なるものを探したりすることで，思考を働かせる場面 で常に意識できるようにした。

表1 思考アイテム

（2）Evidence sheetによる可視化
説明に含めるべき要素と説明の型を明確に示した ワークシートを作成し，名称を「Evidence sheet」（図 2）とした。問題1問の解決に至るまでの思考の過程を記述する欄を，「見通す」，「考える」，「記述する」，
「振り返る」の四つに分けた。生徒は，まとめシート を活用しながら，ワークシートの型に沿って記述する。

図2 Evidence sheet

ア 「見通す」の欄

生徒は，問題文から読み取れる情報について整理す る。求めるものは何か，問題文で指定されている条件 や気を付けることを整理することで，目指す答えが明確になり，見通しを持って取り組む。

イ 「考える」の欄

具体的な解答を作る前に，問題解決に向けて必要な記述事項を次の五つに分けて記述する（表2）。
表2 「考える」の欄の記述事項の説明

方針	問題解決に向けた方針を端的に示す
着眼点	方針を決めるときに着目した思考アイテムを選ぶ
解くため	
の材料	まとめシートに載っている学習内容，既習事項などの 必な要な知識及び技能や思考アイテムを示す
解く過程	方法や計算等を簡潔に示す
理由	解くための材料や解く過程に至った理由を端的に示す

まず，着眼点として，思考アイテムの中から問題解決を方向付けるヒントとなるものを選び，問題解決に向けた方針を立てる。次に，問題解決の過程の一つひ とつに対する，「解くための材料」，「解く過程」，

「理由」を記述することで，根拠を明確にする。

ウ 「記述する」の欄

イで，一つ目の解く過程を記述した後，数学的な表現を用いて，イに対する具体的な解答をウに記述する。 その際は，アで記述したことに留意し，まとめシート の学習内容を適宜確認しながら作成する。二つ目以降 の過程も同様に行い，問題解決に至るまで筋道を立て た解答を作り上げる。グループワークや発表において， ア～ウやまとめシートを提示しながら，他者に説明す る。

エ 「振り返る」の欄

次の三つのチェックリストについて，これまでの取組を振り返る。

- 求めた解は整理した内容と一致していますか。
- 筋道を立てて記述することができましたか。
- 相手に理由を示しながら説明することができました か。

（3）Evidence sheetの活用方法

応用問題1問につき，1枚のEvidence sheetを用い る。例題は，教師による講義形式で解説を行い，その類題となる練習問題は，個人またはグループで取り組 む。

3 検証授業

（1）検証授業の概要
【期 間】 令和5年9月14日（木）～9月27日（水）
【対 象】 上溝南高等学校第2学年3クラス（119名）
【科 目】 数学II
【教科書】 数学II（新興出版社啓林館）
【単元名】三角関数
【時 数】 8 時間（ 50 分授業）
【授業者】西山 有希乃（筆者）が 2 クラス，当該科目担当者 1 名が 1 クラス担当した。
（2）検証授業の授業計画
表3 単元計画（検証授業は太枠内 8 時間）

時間	学習内容
$1 \sim 5$	一般角の三角関数
6	三角関数のグラフ
$7 \cdot 8$	三角関数を含む方程式•不等式
$9 \star$	三角関数を含む方程式
$10 \star$	三角関数を含む関数の最大•最小
11	三角関数の加法定理
12	2 倍角の公式
$13 \star$	2 倍角の三角関数を含む方程式
14	半角の公式
15	三角関数の合成

検証授業前に，ワークシートの活用方法について生徒に説明した。生徒は，毎授業で，まとめシートを机上に準備し，問題を解く際に適宜確認した。表3で丸

の印がある第 9，10，13時間目に応用問題を扱い， Evidence sheetを活用した。

また，三角関数の学習内容の難しさから，生徒は第 $1 \sim 5$ 時間目のところで，基礎的•基本的な知識及び技能の習得に苦慮しているようであった。そこで，知識及び技能の習得を図るために，当初の計画よりもグ ループワークや発表の時間を減らし，毎授業の冒頭で復習する時間を確保した。

4 結果と考察

検証方法として，アンケート調査（事前事後共通）及 びペーパーテスト調査を行った。また，ワークシート の記述内容と取組についてのアンケート調査（事後）の結果から，ワークシートについての考察も行った。

（1）アンケート調査（事前事後共通）

各質問項目の回答を「あてはまる」を5点，「少し あてはまる」を 4 点，「どちらともいえない」を 3 点，
「あまりあてはまらない」を 2 点，「あてはまらない」 を 1 点の 5 件法で質問紙調査を行った。本研究では有意水準を 5% として，事前と事後でJs－STAR XR＋ release 1.9 .5 j （統計ソフト）を使い，参加者内の t 検定（平均値の差の検定）を行った。有意差が見られた項目を表4に示す。有意差の記号＊は5 \％水準で有意を意味する。
表4 $\quad t$ 検定の結果 $(n=100)$

項目		$\begin{gathered} \text { 平均値 } \\ \text { (標準偏差) } \end{gathered}$		有意差
		事前	事後	
1	問題を解くときに，求められている解はな にか，見通しを持って解いていますか。	$\begin{gathered} \hline 3.31 \\ (1.11) \end{gathered}$	$\begin{gathered} 3.53 \\ (1.00) \end{gathered}$	$\begin{gathered} * \\ (\mathrm{p}<0.05) \end{gathered}$
II	問題を解くときに，問題解決の方針を立て て解いていますか。	$\begin{gathered} 2.97 \\ (1.01) \end{gathered}$	$\begin{gathered} 3.21 \\ (1.05) \end{gathered}$	$\begin{gathered} * \\ (\mathrm{p}<0.05) \end{gathered}$

表4から，問題解決に向けての見通しや方針を立て ようとする意識が高まったと考察できる。

（2）ペーパーテスト調査（確認問題）

検証授業後に，三角関数の応用問題である確認問題 （表5）を行った。確認問題は，三角関数の学習内容を活用し，既習事項と関連付けながら解いていく，解答 の過程が長い問題である。解答の過程を（1）～⑤）の五つ に分け，それぞれの過程の正答状況を集計した。

表5 確認問題

問題文		
$0 \leqq \theta<2 \pi$ のとき，方程式 $\cos 2 \theta+7 \sin \theta-4=0$ を解け。		
模範解答		解答の過程
$\cos 2 \theta=1-2 \sin ^{2} \theta \text { より } \quad \cdots \cdots \text { (1) }$	（1）	2 倍角の公式を活用する
$(2 \sin \theta-1)(\sin \theta-3)=0 \quad \cdots \cdots$（2）	（2）	2 次方程式と関連付ける
$-1 \leqq \sin \theta \leqq 1$ より \quad ．．．．．（3）	（3）	$\sin \theta$ の範囲を確認する
$\begin{equation*} \sin \theta=\frac{1}{2} \tag{4} \end{equation*}$	（4）	2次方程式を解く
$\theta=\frac{\pi}{6}, \frac{5}{6} \pi$	（5）	三角関数を含む方程式を解く

（1）のまとめシートで得た知識を活用して，複数ある 2 倍角の公式から適切な公式を選ぶことができた生徒 の割合は 59.5%（116名中 69 名）であった。問題解決の方針となる（2）ができた生徒の割合は 47.4%（116名中 55名）であった。③以降ができた生徒は少なかった。
単元の始めから，生徒が基礎的•基本的な知識及び技能の習得に苦慮していたこともあり，想定より解き進めることができていない生徒が多い状況であった。学習内容の丁寧な説明や基礎的な問題の演習時間を十分に確保すること等の工夫がより必要だったと考える。 ただ，そのような中でも，まとめシートやEvidence sheetで学んだことを活用して問題を解いている生徒 の姿を見て取ることができた。

（3）アンケート調査（事前事後共通）と確認問題の関連

アンケート調査（事前事後共通）において，「問題を解くときに，筋道を立てて考えていますか。」という質問の生徒の割合を示す（図3）。また，質問項目の事後回答について，「あてはまる・少しあてはまる」を α 群，「どちらともいえない・あまりあてはまらない。 あてはまらない」を β 群と分けた。それぞれについて，確認問題の解答の過程（1）及び（2）ができた生徒の割合を比較した（図4）。

図3 質問項目III「問題を解くときに，筋道を立てて考えていますか。」の結果

図4 IIIの回答と過程（1）及び（2）ができた生徒の割合
図3より，α 群の割合は 39% から 46% に上昇した。図 4 より，確認問題の始めの過程を解くことができた生徒の割合は，α 群の方が β 群より 35.4 ポイント多 かった。以上から，今回の取組が，筋道を立てて考え ようとする意識を高め，知識を活用したり問題解決の方針を立てたりする生徒が増えることにつながったと推察できる。また，確認問題（1）及び（2）ができなかった生徒には，日頃の授業から，筋道を立てて考えられる ように根拠を示すことをより意識させる指導の工夫が必要だったと考える。

（4）ワークシートについて

ア ワークシートの記述内容

2 種類のワークシートの記述内容の抜粋を幾つか示 す（図5～7）。
まとめシートのふきだしの欄に，学習内容の活用方法や有用性，注意すべき点などの具体的な記述が見ら

れた。また，学習内容を活用するときの例として，授業で扱った問題やその解答について記述している生徒 もいた。

	て考えられてれは時。 	

図5 生徒A，B，Cのまとめシートの一部「※下線は，筆者」

図6 生徒Dの Evidence sheet

図7 生徒EのEvidence sheet
Evidence sheetの記述には，ワークシートの型に沿った，問題解決に至るまでの思考の過程の記述が見 られた。グループワークや発表の時間，「振り返り」 を記入する時間を十分に確保することができなかった ため，「振り返り」の欄のチェックがない生徒が多かっ た。また，生徒 E のように正しい解答の記述ができて いるが，「考える」の欄の記述がない生徒がいた。こ のような生徒は，根拠を示す記述を省略したのか，解

法の手順を覚えていて根拠を意識できていないのかを判断することができなかった。生徒に根拠を表現させ るような，更なる工夫が必要だったと考える。

イ 取組についてのアンケート調査（事後）

今回の取組について，記述式でアンケート調査（事後）を行った。生徒の記述例を幾つか示す（表6，7）。表6 ワークシートを活用して，できるようになった ことや良かったところの記述内容（抜粋）

まとめシートについての記述内容（原文ママ）
•公式が一目で分かるのが良い，どういう時に使うものかを考えること ができた
•授業ごとに習う公式やわからなかった部分をまとめシートを使って家 で振り返ることができ，とても良かった。 Evidence sheetについての記述内容（原文ママ） ・いつも模範解答を見てもどうしてそうなるの！ってなっていたので こういう理由でこうなったって言うのが分かるのが良かった •他人に説明や教える時に役に立った。順序立てることで答えを導きやす かった。

まとめシートの活用についてのアンケートにおいて， 95． 4 \％（ 108 名中 103 名）の生徒が肯定的な記述をしてい た。基礎的•基本的な学習内容とともに，気付きを自分の言葉で記述する活動を通して，学習内容の理解の深まりを感じている生徒や，分からない部分が明確に なるなど自身の学びについて自覚できた生徒がいた。
Evidence sheet活用についてのアンケートにおいて， 86．1\％（108名中93名）の生徒が肯定的な記述をしてい た。解法の手順ではなく，問題解決に至るまでの根拠 を示して筋道を立てることを意識するようになった生徒や他者に説明する際に活用した生徒がいた。
表7 「全体を通しての感想やどの取組が学習に効果的だと思ったか」の記述内容（抜粋）（原文ママ）

> | •応用問題も思考アイテムを使うことで前よりも解けるようになった |
| :--- |
| •Evidence sheetのように考えることで, 自分の頭の中を整理しながら解 |
| けるから, 今後は, 自分の頭の中をどんどん書き出していこうと思った。 |

思考アイテムを意識的に活用している記述や，ワー クシートを用いて考えを可視化する活動のよさに気付 いた記述があり，今回の取組を数学における日々の学習に取り入れようとする様子がうかがえた。

以上から，生徒は，まとめシートを活用して学習内容と気付きを記述することで，学習内容の理解を深め ようとする意識が高まったと考察できる。また， Evidence sheetの枠に沿って記述することや思考アイ テムを活用することで，問題解決に向けての考え方や取り組み方に変化があったと考えられる。

研究のまとめ

1 研究の成果

2 種類のワークシートを用いた考えを可視化する活動は，「自らの考えや判断の前提を明確にし，根拠を示しながら的確な説明をすること」を促し，論理的思

考力の育成に一定の効果があると考えられる。まとめ シートのように基礎的•基本的な学習内容と気付きを 1枚にまとめて記述すること，思考アイテムを意識的 に活用すること，Evidence sheetのように問題解決に至るまでの思考の過程を記述することは，汎用性があ り，他の単元でも活用できると考える。このような，考えを可視化するための型を作成できたことも本研究 の成果の一つであるといえるだろう。

2 研究の課題と今後の展望

論理的思考力の育成には，基礎的•基本的な知識及 び技能を習得させた上で，問題解決に至るまでの根拠 を示すよう意識させることが必要であり，これらすべ てを短期間で身に付けさせることは難しいと実感した。生徒の論理的思考力を育成するために，次に示す活動 も合わせて継続的に取り入れることで，より効果を高 めていきたい。

（1）気付きの質の向上

検証授業の単元である三角関数の難しさを指摘する先行研究は少なくない。根拠の支えである学習内容の理解を深めるためには，気付きの質を上げる必要があ ると考える。まとめシートの気付きの記述には，「難 しかった」や「覚える」など授業の感想のみの記述が見られた。 I CTを活用して，生徒の気付きの記述を蓄積し，教師が定期的にフィードバックすることや他者と共有することが求められる。

（2）発問のエ夫

ワークシートを活用する際には，その枠に沿って記述することが目的にならないように注意しなくてはな らない。日頃の授業から，生徒に根拠を示すことをよ り意識させる指導の工夫が必要であると考える。具体的には，教師の発問において，結果を問うものではな く，なぜそのような過程や結果になったのかを考えさ せるような発問をすることである。その積み重ねに よって，生徒が常に「なぜ」という問いとその根拠を考えられるようになるだろう。
（3）口述による表現活動の充実
根拠を表現させるための更なる取組として，生徒が記述したものを基に，口述で説明する活動の充実が必要であると考える。口述による表現活動は，他に理解 を得られるように根拠を示したり，筋道を立てたりす ることを促すと考える。また，『解説数学編』には，問題解決の結果や過程などについて説明し伝え合う機会や，お互いの考えを改善したり，一人では気付くこ とのできなかったことを協働して見いだしたりする機会を設けること（文部科学省 2019a p．133）の重要性 が述べられていることから，自らの考えなどを深める

[^1]ことにも有効だろう。

おわりに

本研究では，考えを可視化する活動を通して，数学科の授業における，論理的思考力の育成を目的に取り組んだ。論理的に自分の考えなどを説明する力の育成 は，数学だけでなく，これからの時代において必要で ある。今回のような取組を他の教科，科目，総合的な探究の時間等にも広げて，学校全体で組織的に取り組 めるよう働きかけていきたい。
最後に本研究を進めるに当たり，御協力いただいた上溝南高等学校の生徒•教職員をはじめ，研究に関わつ た全ての皆様に深く感謝を申し上げる。

［指導担当者］

杉山 伯香 ${ }^{2}$ 道岸 浩平 ${ }^{3}$ 梶原 健司 ${ }^{4}$

引用文献

中央教育審議会 2016 「幼稚園，小学校，中学校，高等学校及び特別支援学校の学習指導要領等の改善及び必要な方策等について（答申）」 pp．5－6 https：／／www．mext．go．jp／b＿menu／shingi／chukyo ／chukyo0／toushin／＿icsFiles／afieldfile／2017 ／01／10／1380902＿0．pdf（2023年12月20日取得）
日本数学教育学会出版部 2004 「算数教育指導用語辞典 第三版」 教育出版株式会社 p． 58
文部科学省 2019a 『高等学校学習指導要領（平成30年告示）解説 数学編 理数編』 学校図書株式会社文部科学省 2019b 『高等学校学習指導要領（平成30年告示）解説 総合的な探究の時間編』 学校図書株式会社
有明みゆき 2020 「深い学びにつながる体系的な理解 を促す数学科の授業づくり一学習項目のつなが りを可視化する活動を通してー」『神奈川県総合教育センター長期研究報告 第18集』 pp．25－30西森愛 2017 「高等学校数学において思考過程を数学的に表現する力についての一考察」『全国数学教育学会誌 数学教育学研究 第23巻 第2号』 2017 pp．129－140

参考文献

角田直樹 2012 「高等学校数学の三角比•三角関数に おける困難性についてー連続性と乘離に焦点を当ててー」 上越数学教育研究 第27号
鳥巣晶寛 2023 「高等学校数学科における体系的理解 を促す授業モデルの開発一本質的な問いを用い た『三角関数』の単元を事例に一」 早稲田大学教職大学院紀要 第15号

単元指導計画

単元名：数学

1 科目名「数学II」

2 単元名：三角関数

3 単元の目標（ねらい）（身に付けさせたいカ）

－三角関数についての基本的な概念や原理•法則を体系的に理解するとともに，三角関数を用いて事象を数学化したり，数学的に解釈したり，数学的に表現•処理したりする技能を身に付ける。
－三角関数を活用して事象を論理的に考察する力，事象の本質や他の事象との関係を認識し統合的•発展的に考察する力，三角関数の表現を用いて事象を簡潔•明瞭•的確に表現する力を身に付ける。
－三角関数について，数学のよさを認識し積極的に数学を活用しようとする態度，粘り強く考え数学的論拠に基づいて判断しようとする態度，問題解決の過程を振り返って評価•改善しようとする態度を身に付ける。

4 単元の評価規準

知識•技能	思考•判断•表現	主体的に学習に取り組む態度
（1）角の概念を一般角まで拡張す	（1）三角関数に関する様々な性質	（1）事象を三角関数の考えを用
る意義や弧度法による角度の表	について考察するとともに，三角	いて考察するよさを認識し，問
し方について理解している。	関数の加法定理から新たな性質	題解決にそれらを活用しよう
（2）角関数の値の変化やグラフ	を導くことができる。	としたり，粘り強く考え数学的
の特徴について理解している。	（2三角関数の式とグラフの関係	論拠に基づき判断しようとし
（3）三角関数の相互関係などの基	について多面的に考察すること	たりしている。
本的な概念を体系的に理解し，	ができる。	（2）三角関数やそのグラフの性
数学的に表現•処理する技能を	（3）二つの数量の関係に着目し，日	質を活用した問題解決におい
身に付けている。	常の事象や社会の事象など数学	て，粘り強く考え，その過程を
（4）角関数の加法定理や2倍角	的に捉え，問題を解決したり，解	振り返って考察を深めたり評
の公式，三角関数の合成につい	決の過程を振り返って事象の数	価•改善したりしようとしてい
て理解している。	学的な特徴や他の事象との関係	る。
	を考察したりすることができる。	

5 単元の指導と評価の計画（15時間）
○「記録に残す評価」 「指導に生かす評価」

次	時	学習活動	知	思	態	評価のポイント・指導上のポイント
第	10 時 間 扱	－角の概念を一般角まで拡張する意義や弧度法による角度の表し方 について理解する。 －三角比の拡張として三角関数の定義を理解する。 －三角関数の相互関係などの基本的な概念を体系的に理解し，数学的に表現•処理する技能を身に付				【指導上のポイント】 （知）三角比の拡張として三角関数が定義 されることを確認する。 （思）三角関数の表，式，グラフを相互に関連付け，多面的に考察できるように指導 する。 （思）三角関数を含む関数について既習事項を活用しながら考察し，定義域や値域に

		ける。 －三角関数の式とグラフの関係に ついて多面的に考察する。 －三角関数を含む方程式•不等式 の基本的な概念を体系的に理解 し，数学的に表現•処理する技能 を身に付ける。 －三角関数を含む関数について多面的に考察し，最大値•最小値を求める。 －確認テストを行う。	\bigcirc	\bigcirc	\bigcirc	留意して，最大値•最小値を求めることが できるように指導する。 （態）三角関数の考えを用いて考察するよ さを認識し，問題解決にそれらを活用しよ らとしたり，粘り強く考えて数学的論拠に基づき判断しようとしたりするように指導する。 （思）問题演習を通して，学習内容を確認す るとともに，生徒間で相互に説明し，数学的に表現できるように指導する。 【評価のポイント】 （知）三角関数に関する基本的な性質を理解し，数学的に表現•処理する技能を身に付けているかを評価する。 （思）三角関数の式とグラフの関係につい て多面的に考察することができているか を評価する。
第 二 次	5 時 間 扱	－三角関数の加法定理や 2 倍角の公式，三角関数の合成について理解する。 －三角関数の加法定理から他の定理を導くことができる。 － 2 倍角の公式を活用して，三角関数を含む方程式や不等式を求め ることができる。 －三角関数の合成を活用して，三角関数を含む関数の最大値•最小値を求めることができる。 －問題解決の過程を振り返って事象の数学的な特徴や他の事象との関係を考察する。 －単元全体の振り返りを行う。	\bigcirc	\bigcirc \bigcirc \bigcirc	\bigcirc	【指導上のポイント】 （態）加法定理や三角関数の合成のよさを認識できるように指導する。 （思）三角関数を含む方程式•不等式につ いて， 2 倍角の公式を活用しながら考察 し，定義域や値域に留意して解くことがで きるよう指導する。 （思）三角関数を含む関数について，三角関数の合成を活用しながら考察し，定義域 や値域に留意して解くことができるよう指導する。 （思）問題演習を通して，学習内容を確認す るとともに，生徒間で相互に説明し，数学的に表現できるように指導する。 【評価のポイント】 （思）解決の過程を振り返って事象の数学的な特徴や他の事象との関係を考察して いるか評価する。 （態）三角関数やそのグラフの性質を活用 した問題解決において，粘り強く考え，そ の過程を振り返って考察を深めたり評価•改善したりしょうとしているか評価する。

まとめシート（三角関数）ふきだしに，学習内容について，気付いたこと・どのようなときにときに使うかなどの振り返りを記述しましょう。

（4）三角関数の定義

$\sin \theta=\quad, \cos \theta=\quad, \tan \theta=$原点 O を中心とする半径 1 の円（単位円） $\sin \theta=\quad, \cos \theta=\quad, \tan \theta=$
三角関数のとる値の範囲と符号

（10） 2 倍角の公式

（11）半角の公式

[^2]

考えるためのヒント

様々な場面において，思考を活性化させるためのヒントとして，以下の表にある思考アイテムを活用しよう。

	考えるため の技法	思考アイテム	
1	比較する	比較する	
2	具体化する	数を代入する $\begin{aligned} & n=1 \\ & 23 \\ & 23 \end{aligned}$	焦点化する
3	多面的に見る	図にする	置き換える
4	関連付ける	関連付ける	
5	分類する	分ける \square	まとめる

Evidence sheet

数学の問題を解くときに，以下のことを意識してみましょう。 | 見通す | 考える | | | |
| :---: | :---: | :---: | :---: | :---: |
| O 記述する | 発表する | 振り返る | | |
| 示 | | | | |

三争関数の値

三角比の定義で，とくに単位円（原点中心，半径1の円）を考えると

$$
\begin{aligned}
& \sin \theta=y \\
& \cos \theta=x
\end{aligned}
$$

すなわち，単位円の周上の点 $\mathrm{P}(\cos \theta, \sin \theta)$

	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \theta$									π
$\cos \theta$									
$\tan \theta$									

		210°	225°	240°	270°	300°	315°	330°	360°
$\sin \theta$								2π	
$\cos \theta$									
$\tan \theta$									

問題解決に向けて，根拠を示しながら筋道を立てよう。

2年（ ）組（ ）番 氏名（
目鲬な 問題について整理しよう。

求めるもの	問題文にある条件	他の条件や気を付けること

解答を振り返ろう。
\square 求めた解は整理した内容と一致していますか。
\square 相手に理由を示しながら説明することができましたか。

[^0]: 1 県立上溝南高等学校 教諭

[^1]: 2 指導担当主事 3 指導主事
 4 教育指導専門員

[^2]: $y=k \sin \theta$ のグラフは，$y=\sin \theta$ のグラフを 軸方向に 倍に拡大
 $y=\sin k \theta$ のグラフは，$y=\sin \theta$ のグラフを 軸方向に 倍に拡大
 $y=\sin (\theta-\alpha)$ のグラフは，$y=\sin \theta$ のグラフを 軸方向に だけ平行移動

